Two-Dimensional Orthogonal Wavelets with Vanishing Moments - Signal Processing, IEEE Transactions on
نویسندگان
چکیده
AbstructWe investigate a very general subset of 2-D, orthogonal, compactly supported wavelets. This subset includes all the wavelets with a corresponding wavelet (polyphase) matrix that can be factored as a product of factors of degree-1 in one variable. In this paper, we consider, in particular, wavelets with vanishing moments. The number of vanishing moments that can be aichieved increases with the increase in the McMillan degrees of the wavelet matrix. We design wavelets with the maximal number of vanishing moments for given McMillan degrees by solving a set of nonlinear constraints on the free parameters defining the wavelet matrix and discuss their relation to regular, smooth wavelets. Design examples are given for two fundamental sampling schemes: the quincunx and the four-band separable sampling. The relation of the wavelets to the well-known I-D Daubechies wavelets with vanishing moments is discussed.
منابع مشابه
Two-dimensional orthogonal wavelets with vanishing moments
We investigate a very general subset of two-dimensional, orthogonal, compactly supported wavelets. This subset includes all the wavelets with a corresponding wavelet (polyphase) matrix that can be factored as a product of factors of degree-1 in one variable. In this paper we consider in particular wavelets with vanishing moments. The number of vanishing moments that can be achieved increases wi...
متن کاملConstraints of Second-Order Vanishing Moments on Lattice Structures for Non-separable Orthogonal Symmetric Wavelets
In this paper, a design method of two-dimensional (2-D) orthogonal symmetric wavelets is proposed by using a lattice structure for multi-dimensional (M-D) linear-phase paraunitary filter banks (LPPUFB), which the authors have proposed as a previous work and then modified by Lu Gan et al. The derivation process for the constraints on the second-order vanishing moments is shown and some design ex...
متن کاملTwo-dimensional orthogonal filter banks and wavelets with linear phase
Two-dimensional (2-D) compactly supported, orthogonal wavelets and filter banks having linear phase are presented. Two cases are discussed: wavelets with two-fold symmetry (centrosymmetric) and wavelets with four-fold symmetry that are symmetric (or anti-symmetric) about the vertical and horizontal axes. We show that imposing the requirement of linear phase in the case of order-factorable wavel...
متن کاملThe design of approximate Hilbert transform pairs of wavelet bases
Several authors have demonstrated that significant improvements can be obtained in wavelet-based signal processing by utilizing a pair of wavelet transforms where the wavelets form a Hilbert transform pair. This paper describes design procedures, based on spectral factorization, for the design of pairs of dyadic wavelet bases where the two wavelets form an approximate Hilbert transform pair. Bo...
متن کاملMathematical properties of the JPEG2000 wavelet filters
The LeGall 5/3 and Daubechies 9/7 filters have risen to special prominence because they were selected for inclusion in the JPEG2000 standard. We determine their key mathematical features: Riesz bounds, order of approximation, and regularity (Hölder and Sobolev). We give approximation theoretic quantities such as the asymptotic constant for the L2 error and the angle between the analysis and syn...
متن کامل